Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
Гамма — и полигамма-функции | Учебники

Главная > Mathematica 8 > Гамма — и полигамма-функции


Гамма — и полигамма-функции

Гамма- и полигамма-функции
Широко используются гамма-функция и относящиеся к ней родственные функции:

  • Gamma [ а ] — эйлерова гамма-функция;
  • Gamma [ a, z] — неполная гамма-функция;
  • Gamma [a, z 0, z 1 ] — обобщенная неполная гамма-функция Gamma (а, z 0) -Gamma(a,zl);
  • GammaRegularized[a, z] — регуляризованная неполная гамма-функция
  • (а,2)=Gamma(а,z)/Gamma(a);
  • GammaRegularized[a, z0, zl] — обобщенная неполная гамма-функция Q(a,z0)-Q(a, zl);
  • LogGamma [ z ] — логарифм эйлеровой гамма-функции;
  • Pol у Gamma [ z ] — дигамма-функция \|/(z);
  • Pol у Gamma [n, z] — n-я производная от дигамма-функции.

Приведем примеры вычисления этих функций.

Ввод (In)

Вывод (Out)

Gamma[l,2.+3.*I]

-0.133981- 0,.0190985 I

Gamma [0.5]

1.77245

Gaitima [1,2. , 3 . ]

0.0855482

GammaRegularized [ 1 , 2 . +3 . I , 4 . +6 . *I ]

-0.139176- 0.0366618 I

LogGamma [0.5]

0.572365

LogGarama [ 2 . +3 . * I ]

-2.09285 + 2.3024 I

PolyGamma[l]

-EulerGamma

PolyGamma [ 1 . ]

-0.577216

PolyGarama [2 . +3 . *I]

1.20798 + 1.10413 I

Как видно из этих примеров, данный класс функций (как и многие другие) определен в общем случае для комплексного значения аргумента.
На представлены графики эйлеровой гамма-функции и неполной гамма-функции при вещественном аргументе. Поведение эйлеровой гамма-функции довольно сложно, особенно при отрицательных значениях аргумента — наблюдаются характерные разрывы функции с ее уходом в положительную и отрицательную бесконечность.
Поведение эйлеровой гамма-функции в комплексной плоскости довольно интересно. На показан контурный график этой функции, отражающий ее поведение на комплексной плоскости в ограниченной области изменения действительной и мнимой частей аргумента.
Графики других гамма-функций пользователь может’ построить и просмотреть самостоятельно.
Функции Бесселя
 
Функции Бесселя, являющиеся решениями линейных дифференциальных уравнений вида z 2 y" + zy’+ (z 2 — п 2 )у = 0, широко используются в анализе и моделировании волновых процессов. В системе Mathematica к этому классу относятся следующие функции:

  • Bessell[n, z] — модифицированная функция Бесселя первого рода I(n, z);
  • BesselJ[n, z] — функция Бесселя первого рода J(и, z);
  • BesselK[n, z] — модифицированная функция Бесселя второго рода К(п, z);
  • BesselY[n, z] — функция Бесселя второго рода Y(n, z).

Соотношения между этими функциями хорошо известны. Следующие примеры показывают вычисление функций Бесселя.

Ввод (In)

Вывод (Out)

Bessell[0,l.]

1.26607

Bessell[3,l.]

0.0221684

Bessell[l,2.+3.*I]

-1.26098 + 0.780149 I

Bessell[2,2.+3.*I]

1.25767 + 2.31877 I

BesselK[2,2.+3.*I]

-0.0915555 + 0.0798916 I

BesselY[2,2.+3.*I]

-2.3443 + 1.27581 I

BesselY[2,2.+3.*I]

N[BesselJ[l,0.5]]

0.242268

N[BesselJ[l, 2+1*3]]

3.78068- 0.812781 I

Приведем также пример на вычисление производной от функции Бесселя:
D[BesselJ[l, x], (х, 2}]
1/2 (-BesselJ[l, x] +
1/2 (-BesselJ[l, x] +BesselJ[3, x]) )
Нетрудно заметить, что результат в данном случае также представлен через функции Бесселя.
В другом примере — вычислении интеграла от функции Бесселя — результат выражается через гипергеометрическую функцию:
Integrate[BesselJ[2,x],x]
1/24 x3 HypergeometricPFQ [ { 2/3 }, { 5/2,3}, -x2/4]
На показаны графики функций Бесселя Bessell и BesselJ первых четырех порядков.

Графики других функций Бесселя вы можете получить самостоятельно. Они представляют меньший интерес, чем графики, приведенные на.

Статьи по теме

Комментарии запрещены.