Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
Моделирование цепи на туннельном диоде | Учебники

Главная > Maple 15 > Моделирование цепи на туннельном диоде


Моделирование цепи на туннельном диоде

Моделирование цепи на туннельном диоде
А теперь займемся моделированием явно нелинейной цепи. Выполним его для цепи, которая состоит из последовательно включенных источника напряжения Es, резистора Rs, индуктивности L и туннельного диода, имеющего N-образную вольтамперную характеристику (ВАХ). Туннельный диод обладает емкостью С, что имитируется конденсатором С, подключенным параллельно туннельному диоду. Пусть ВАХ реального туннельного диода задана выражением:
> restart:
> A:=.3t: а:=10: В:=1*10^(-8): b:=20:
> Id:=Ud->A*Ud*exp(-a*Ud)+B*(exp(b*Ud-D):
Id:=Ud->AUde(-aUd)+Be(bUd-1)
Построим график ВАХ:
> plot(Id(Ud), Ud=-.02..0.76,color=black):
Этот график представлен . Нетрудно заметить, что ВАХ туннельного диода не только резко нелинейна, но и содержит протяженный участок отрицательной дифференциальной проводимости, на котором ток падает с ростом напряжения. Это является признаком того, что такая цепь способна на переменном токе отдавать энергию во внешнюю цепь и приводить к возникновению колебаний в ней различного типа.
Работа цепи описывается системой из двух дифференциальных уравнений:
di/dt=(Es-i(t)*Rs-u(t))/L
du/dt=(i(t)-Id(u(t))/C
Пусть задано Es = 0,35 В, Rs= 15 Ом, С = 10*10-12, L = 30*10-9 и максимальное время моделирования tm=10*10-9. Итак, задаем исходные данные:
> Es:=.35:Rs:=15:C:=10*10^(-12):L:=30*10^(-6):tm:=10*10^(-9):
Составим систему дифференциальных уравнений цепи и выполним ее решение с помощью функции dsolve:

Поскольку заведомо известно, что схема имеет малые значения L и С, мы задали с помощью параметров достаточно малый шаг решения для функции dsolve — stepsize=l(T(-11) (с). При больших шагах возможна численная неустойчивость решения, искажающая форму колебаний, получаемую при моделировании. Используя функции odeplot и displ ay пакета plots, построим графики решения в виде временных зависимостей u(t) и 10*i (t) и линии, соответствующей напряжению Es источника питания:
> gu:=odeplot(F,[t,u(t)],0,tm,color=black,
labels=[‘tVu(t),10*i(tr]):
> gi:=odeplot(F,[t,10*i(t)],0..tm.color-black):
> ge:=odeplot(F,[t,Es].0..tm.color=red): .
> display(gu.gi,ge);
Эти зависимости представлены. Из них хорошо видно, что цепь создает автоколебания релаксационного типа. Их форма сильно отличается от синусоидальной.
Решение можно представить также в виде фазового портрета, построенного на фоне построенных ВАХ и линии нагрузки резистора Rs:
> gv:=plot({Id(Ud),(Es-Ud)/Rs},Ud=-.05..0.75,color=black,
labels=[Ud,Id]):
> gpp:=odeplot(F.[u(t),i(t)],0..tm,color=blue):
> display(gv,gpp);
Фазовый портрет колебаний показан.
О том, что колебания релаксационные можно судить по тому, что уже первый цикл колебаний вырождается в замкнутую кривую — предельный цикл, форма которого заметно отличается от эллиптической.
Итак, мы видим, что данная цепь выполняет функцию генератора незатухающих релаксационных колебаний. Хотя поставленная задача моделирования цепи на туннельном диоде успешно решена, в ходе ее решения мы столкнулись с проблемой обеспечения малого шага по времени при решении системы дифференциальных уравнений, описывающих работу цепи. При неудачном выборе шага можно наблюдать явную неустойчивость решения.

Применение интеграла Дюамеля для расчета переходных процессов
Вернемся к линейным цепям и рассмотрим еще один полезный метод расчета электрических цепей — с помощью интеграла Дюамеля. При нем можно рассчитать временную зависимость выходного напряжения u2(t) цепи по известному входному сигналу ul(t) и переходной характеристике цепи a(t). Возьмем в качестве первого классического примера дифференцирующую RC-цепь и вычислим ее реакцию на экспоненциально нарастающий перепад напряжения.
Представлены заданные зависимости ul(t) и a(t), аналитическое выражение для интеграла Дюамеля (одна из 4 форм) и аналитическое выражение для искомой зависимости u2(t). Пока последнее выражение довольно простое. В конце этого фрагмента документа построены графики зависимостей ul(t), a(t) и u2(t).
Обратите внимание на то, что выражение для u2(t), получаемое с помощью интеграла Дюамеля, стало намного сложнее. Тем не менее получено как аналитическое выражение для реакции цепи u2(t), так и графики ul(t), a(t) и u2(t). Они показаны внизу графика.

Заключение
Программа Maple корпорации Waterloo Maple Inc. — патриарх в мире систем компьютерной математики. Эта система, снискавшая себе мировую известность и огромную популярность, является одной из лучших среди систем символьной математики, позволяющих решать математические задачи в аналитическом виде. Эта книга познакомила читателей с новейшей версией Maple — Maple 15. Она вобрала в себя не только обширные и мощные возможности- предшествующих реализаций системы, но и предоставила в распоряжение пользователя ряд новых возможностей. Прежде всего это целый букет пакетов: CurveFitting, PolynomialTools, OrthogonalSeries и др.
Maple как система компьютерной математики развивается по ряду характерных направлений. Одно из них — повышение мощности и достоверности аналитических (символьных) вычислений. Это направление представлено в Maple наиболее сильно. Maple 15 уже сегодня способна выполнять сложнейшие аналитические вычисления, которые нередко не под силу даже опытным математикам. Конечно, Maple не способна на «гениальные догадки», но зато рутинные и массовые расчеты система выполняет с блеском. В новой версии ее возможности существенно расширены, особенно в области решений дифференциальных уравнений. : Другое важное направление — повышение эффективности численных расчетов. И тут успехи налицо — начиная с версии Maple 6 в систему включены эффективные алгоритмы группы NAG, лидирующей в области численных расчетов. Повышена эффективность и алгоритмов самой системы Maple 15. В результате этого заметно возросла перспектива использования Maple в численном моделировании и выполнении сложных численных расчетов — в том числе с произвольной точностью.
Интеграция Maple с другими программными средствами — еще одно важное направление развития этой системы. Ядро символьных вычислений Maple уже включено в состав целого ряда систем компьютерной математики — от систем «для всех» класса Mathcad до одной из лучших систем для численных расчетов и моделирования — MATLAB. Имеется целый ряд автоматизированных рабочих мест для математиков на основе ядра системы Maple: Math Office, Scientific Word, Scientific Workplace и др.
Предусмотрена и интеграция Maple 15 с Excel 2000 и MATLAB. Однако альянс Maple 15 с Excel трудно назвать удачным. Во-первых, потому, что куда более распространенная версия Excel 97 связь с Maple 15 не поддерживает. Во-вторых, введенные в Maple 15 средства работы с таблицами (в том числе новые) в большинстве случаев оказываются более удобными, чем обычные средства работы с таблицами у Excel. Достаточно отметить, что таблицы в Maple могут работать с формульными данными и построение рисунков в Maple не требует создания таблицы данных для них, как это нужно в Excel.
Существенно расширена поддержка системы Maple через Интернет. Появление на сайте корпорации Waterloo Maple Inc. массы информационных материалов, и прежде всего обучающих программ и примеров применения Maple, разгрузило саму программу и предоставило ее пользователям обширные возможности в пополнении своих знаний и навыков работы с Maple 15.
С другой стороны, резко повышены возможности Maple 15 для создания web-страниц — основы Интернета. Здесь прежде всего надо отметить включение в пакеты средств поддержки языков HTML, XML и (что особенно важно) MathML.
Все эти возможности в сочетании с прекрасно выполненным и удобным пользовательским интерфейсом и мощной справочной системой делают Maple 15 первоклассной программной средой для решения самых разнообразных математических задач: от самых простых до самых сложных. Особо следует отметить возможность создания превосходных электронных документов, статей, книг и учебников в среде Maple 15 с «живыми» и модифицируемыми примерами.
Maple — быстро развивающаяся система, и работа с ней не только полезна, но и приятна для всех категорий пользователей и учащихся. Автор надеется, что эта книга привлечет внимание наших читателей, и прежде всего специалистов, преподавателей вузов, аспирантов, студентов и даже школьников, к такому уникальному программному продукту, как система компьютерной математики Maple 15, и поможет им в решении учебных и реальных научно-технических задач.

Статьи по теме

Комментарии запрещены.