Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
Обратные тригонометрические функции | Учебники

Главная > Maple 15 > Обратные тригонометрические функции


Обратные тригонометрические функции

Обратные тригонометрические функции
К обратным тригонометрическим относятся следующие функции:

  •  arcsin — арксинус;
  •  arccos — арккосинус;
  •  arctan — арктангенс;
  •  arcsec — арксеканс;
  •  arccsc — арккосеканс;
  •  arccot — арккотангенс.

Примеры вычислений:

К этому классу функций принадлежит еще одна полезная функция: arctan(y.x) = argument(x+I*y)
Она возвращает угол радиус-вектора в интервале от -Pi до Pi при координатах конца радиус-вектора х и у (см. пример ниже):

Графики ряда обратных тригонометрических функций показаны.
Гиперболические функции
Гиперболические функции представлены следующим набором:

  •  sinh — гиперболический синус;
  •  cosh — гиперболический косинус;
  •  tanh — гиперболический тангенс;
  •  sech — гиперболический секанс;
  •  csch — гиперболический косеканс;
  •  coth — гиперболический котангенс.

Примеры применения гиперболических функций представлены ниже:

На сверху представлены графики гиперболического синуса, косинуса и тангенса. По ним можно судить о поведении этих функций.

 ПРИМЕЧАНИЕ
 В отличие от тригонометрических гиперболические функции не являются периодическими. Функция гиперболического тангенса имеет симметричную кривую с характерными ограничениями. Поэтому она широко используется для моделирования передаточных характеристик нелинейных систем с ограничением выходного параметра при больших значениях входного параметра.
Обратные гиперболические функции
Как и тригонометрические функции, гиперболические имеют свои обратные функции:

  •  arcsinh — гиперболический арксинус;
  •  arccosh — гиперболический арккосинус; 
  •  arctanh — гиперболический арктангенс;
  •  arcsech — гиперболический арксеканс: 
  •  arccsch — гиперболический арккосеканс: 
  •  arccoth — гиперболический арккотангенс. 

Примеры применения:

Графики обратных гиперболических синуса, косинуса и тангенса представлены снизу.
Степенные и логарифмические функции
К степенным и логарифмическим относятся следующие функции системы Maple 15:

  •  ехр — экспоненциальная функция;
  •  ilog10 — целочисленный логарифм по основанию 10 (возвращает целую часть от логарифма по основанию 10);
  •  ilog — целочисленный логарифм (библиотечная функция, возвращающая
  • целую часть от натурального логарифма);
  •   n — натуральный логарифм;
  •  log — логарифм по заданному основанию (библиотечная функция);
  •  log10 — логарифм по основанию 10;
  •  sqrt — квадратный корень. 

Примеры применения:

На показаны также графики синусоиды с экспоненциально падающей и нарастающей амплитудой. Читателю рекомендуется попробовать свои силы в построении графиков комбинаций различных функций.

Функции с элементами сравнения
В алгоритме вычисления ряда функций заложено сравнение результата с некоторым опорным значением. К таким функциям относятся:

  •  abs — абсолютное значение числа;
  •  ceil — наименьшее целое, большее или равное аргументу;
  •  floor — наибольшее целое, меньшее или равное аргументу;
  •  frac — дробная часть числа;
  •  trunc — целое, округленное в направлении нуля;
  •  round — округленное значение числа;
  •  signum (х) — знак х (-1 при х < 0, 0 при х = 0 и +1 при х > 0).

Для комплексного аргумента х эти функции определяются следующим образом:

  •  tranc(x) = trunc(Re(*)) + I*trunc(IM(x));
  •  round(x) = round(Re(.r)) + I*round(Im(x));
  •  frac(x) — frac(Re(*)) + I*hac(Im(x)).

Для введения определения значения floor(x) от комплексного аргумента прежде всего запишем а = Re(x) — fооr(Re(x)) и b = Im(x) — floor(Im(x)). Тогда flооr(x) = floor(Re(x)) + I*floor(Im(x)) + X, где

Наконец, функция ceil для комплексного аргумента определяется следующим образом:
cell(x) = -fооr(-х) 

Примеры применения:

Статьи по теме

Комментарии запрещены.