Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
Паде-аппроксимация с полиномами Чебышева | Учебники

Главная > Maple 15 > Паде-аппроксимация с полиномами Чебышева


Паде-аппроксимация с полиномами Чебышева

Паде-аппроксимация с полиномами Чебышева
Для многих аналитических зависимостей хорошие результаты дает аппроксимация полиномами Чебышева. В общем случае применяется Паде-аппроксимация отношением таких полиномов. Она реализуется функциями chebpade:
chebpade(f, x=a..b, [m.n])
chebpade(f., x, [m.n])
chebpade(f, a..b, [m,n])
Здесь а..b задает отрезок аппроксимации, тип— максимальные степени числителя и знаменателя полиномов Чебышева. Приведенный ниже пример показывает аппроксимацию Паде полиномами Чебышева для функции f=cos(x):

Наилучшая минимаксная аппроксимация
Минимаксная аппроксимация отличается от Паде-аппроксимации минимизацией максимальной абсолютной погрешности во всем интервале аппроксимации. Она использует алгоритм Ремеза (см. ниже) и реализуется следующей функцией:
mimmax(f, x=a..b, [m.n], w, ‘maxerror’) 
minimax(f, a..b, [m,n], w, ‘maxerror’)
Здесь помимо уже отмеченных параметров w — процедура или выражение, maxerror — переменная, которой приписывается значение miniraax-нормы. Ниже дан пример аппроксимации функции cos(x) в интервале [-3, 3]:

Наилучшая минимаксная аппроксимация по алгоритму Ремеза
Для получения наилучшей полиномиальной аппроксимации используется алгоритм Ремеза, который реализует следующая функция:
remez(w, f, a, b, m, n,_crit, ‘maxerror’)
Здесь w — процедура, представляющая функцию w(x) > 0 в интервале [a, b], f — процедура, представляющая аппроксимируемую функцию а и b — числа,’ задающие интервал аппроксимации fa,b], m и n — степени числителя и знаменателя аппроксимирующей функции, crit — массив, индексированный от 1 до m + n + 2 и представляющий набор оценок в критических точках (то есть точек максимума/минимума кривых погрешности), mахеrrоr — имя переменной, которой присваивается минимаксная норма w abs(f -r).
Следующий пример иллюстрирует применение данной функции для аппроксимации функции erf(x):

Другие функции пакета
Отметим назначение других функций пакета numapprox:

  •  chebdeg(p) — возвращает степень полинома Чебышева р;
  •  chebmult(p, q) — умножение полиномов Чебышева р и q;
  •  chebsort(e) — сортирует элементы ряда Чебышева;
  •  confracform(r) — преобразует рациональное выражение г в цепную дробь;
  •  confracform(r, х) — преобразует рациональное выражение г в цепную дробь с независимой переменной х; 
  •  hornerform(r) — преобразует рациональное выражение г в форму Горнера;
  •  hornerform(r, х) — преобразует рациональное выражение г в форму Горнера с независимой переменной х; 
  •  infnorm(f, x=a…b, ‘xmax’) — возвращает L-бесконечную норму функции на отрезкех [а, b];
  •   infnorm(f, a…b, ‘xmax’) — возвращает L-бесконечную норму функции на отрезке [а, b].

Действие этих функций очевидно, и читатель может самостоятельно опробовать их в работе.
Пакет интегральных преобразований inttrans
Общая характеристика пакета
Это один из пакетов, наиболее важных для общематематических и научно-технических приложений. Он содержит небольшой набор функций:
> with(inttrans):
[addtable,fourier,fouriercos,fouriersin, hankel, hilbert, invfourier, invhilbert, invldplace, invmellin, laplace, mellin, savetable]
Однако эти функции охватывают такие практические важные области математики, как ряды Фурье, прямые и обратные преобразования Лапласа и Фурье и ряд других интегральных преобразований. Ниже они обсуждены более подробно.

В предшествующих реализациях системы Maple функции прямого и обратного Z-преобразований также входили в пакет inttrans, однако в Maple 6 и 7 они перенесены в ядро системы.

Статьи по теме

Комментарии запрещены.