Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
Работа с простыми числами-PrimeQ | Учебники

Главная > Mathematica 8 > Работа с простыми числами-PrimeQ


Работа с простыми числами-PrimeQ

Работа с простыми числами-PrimeQ
В подпакете PrimeQ в дополнение к функции ядра PrimeQ [n] имеется ряд функций для работы с простыми числами:

  • ProvablePrimeQ [n] — возвращает True, если п проверено на простоту, и False в ином случае;
  • PrimeQCertif icate [n] — возвращает сертификат о том, что n— простое или композитное число;
  • ProvablePrimeQ [n, Certif icate->True] — возвращает сертификат, который может использоваться для проверки чисел на простоту;
  • PrimeQCertif icateCheck [check, n] — проверяет, удостоверяет ли сертификат check простоту или композитность п.

Следующие примеры показывают работу с простыми числами:
<<NumberTheory` PrimeQ`
PrimeQ[127]
True
ProvablePrimeQ[127]
True
PrimeQCertificate[127]
{127, 3, {2, {3, 2, {2}.}, {7, 3, {2, {3, 2, {2}}}}}}
ProvablePrimeQ[127, Certificate->True]
(True, {127, 3, {2, {3, 2, {2}}, {7, 3, {2, {3, 2, {2}}}}}}}
PrimeQCertificate[3511, SmallPrime -> 1000]
{{CertificatePrime -> 3511,
CertificatePoint->PointEC[2, 2467, 1447, 2135, 3511], Certif icateK-> 32, Certif icateM -> 3424,
CertificateNextPrime -*107, CertificateDiscriminant -> -7},
107, 2, {2, {53, 2, {2, {13, 2, {2, {3, 2, {2}}}}}}}}
 
Вычисление примитивных элементов — Primitive Element
Подпакет PrimitiveElement содержит всего одну функцию для вычисления примитивных элементов множественного алгебраического выражения:

  • PrimitiveElement [z, {а1„а2,…} ] — возвращает список {b, { f1, f2,…}}, где b — примитивный элемент расширения рациональных алгебраических чисел al, а2,… и f1, f 2,… — полином переменной z, представляющей al, a2, … как термы примитивного элемента.

Ее действие видно из следующего примера:
<<NumberTheory`PrimitiveElement`
PrimitiveElement[z, {Sqrt[2], Sqrt[3]}]
RootReduce[%[[2]] /. z -> %[[1]]]
 
Создание рядов Рамануджанат-Дирихле — Ramanujan
В подпакете Ramanujan определены следующие функции:

  • RamanujanTau [n] — n-й коэффициент ряда Рамануджана т-Дирйхле (т n );
  • RamanujanTauGeneratingFunction [z] — производящая функция ряда Рамануджана т-Дирихле;
  • RamanujanTauDirichletSeries [s] — ряд Рамануджана т-Дирихле f(s);
  • RamanujanTauTheta [t] — функция Рамануджана т-Дирихле o(t)
  • RamanujanTauZ [t] — функция Рамануджана т-Дирихле z(t).

Это довольно редкие функции, представляющие интерес для специалистов в теории чисел. Достаточно подробные их определения даны в справочной базе данных. Ограничимся приведением примеров их использования:
<<NumberTheory`Ramanujan`
RamanujanTau[5]
4830
Sum[RamanujanTau[n] z^n, {n, 5}]
z — 24 z2 + 252 z3 — 1472 z4 + 4830 z5
RamanujanTauGeneratingFunction[. 1]
0.00610209
RamanuJanTauGeneratingFunction[.99]
4.10287803703 x -1673
RamanujanTauDirichletSeries[6 + 9.221]
0.00040309-0.002390131
z = RamanujanTauZ[9.22]
0.00242388
theta = RamanujanTauTheta[9.22]
1.40372043366323 z Exp[-I theta]
0.00040309 — 0.00239013 I
 
Рационализация чисел — Rationalize
Подпакет Rationalize расширяет возможности представления чисел в рациональном виде. Он содержит определения следующих функций:

  • ProjectiveRationalize [ {х0, xl,…, хn} ] — возвращает список целых чисел, дающих рациональные представления для чисел заданного списка;
  • ProjectiveRationalize [ {х0, xl,…, хn} ,ргес] — возвращает список целых чисел, дающих рациональные представления с погрешностью не более 10- рreк
  • Af f ineRationalize [ {х0, xl,…, хn} ] — возвращает список рациональных приближений для чисел заданного списка;
  • Aff ineRationalize [ {х0, xl,…, xn} ,prec] — возвращает список рациональных приближений для чисел заданного списка, вычисленных с погрешностью не более 10- ргес .

Встроенная в ядро функция Rationalize дает рациональное представление для одиночных вещественных чисел. Приведенные функции выполняют рационализацию для списков чисел. Примеры их применения представлены ниже:
<<NumberTheory` Rationalize`
Rationalize[N[3 Pi], 6]/ Rationalize[N[11 Pi], 6]
9/35
ProjectiveRationalize[{N[3 Pi], N[11 Pi]}]
{3, 11}
AffineRationalize[{N[3 Pi], N[11 Pi]}, 6]
{1065/113, 3905/113 }
 
Нахождение полинома, дающего заданный корень — Recognize
Подпакет Recognize содержит определение одноименной с ним функции в двух формах:

  • Recognize [x,n,t] — находит полином переменной t степени, большей п, такой, что х является его корнем;
  • Recognize [х, n, t, k] — находит полином переменной t степени, большей п, такой, что х является его корнем, и со штрафным весовым коэффициентом k, предназначенным для подавления генерации полиномов высших степеней.

Действие этой функции поясняют следующие примеры:
<<NumberTheory`Recognize`
NSolve[2 x^3- x + 5 == 0]
{{x->-1.4797}, {x-> 0.739852-1.068711}-,
{x->0.739852+ 1.068711}}
sol = First[x /. %]
-1.4797
Recognize[sol, 3, t]
5-t+2t3
Recognize[sol, 2, t]
-225599 — 1464961 + 4032 t2
Recognize[N[Sqrt[3^(2/5)]], 5, t]
-3+t5
Recognize[N[Sqrt[3A(2/5)]], 5, t, 10]

-14625 + 11193 t + 328 t2 + 8813 + t4

Статьи по теме

Комментарии запрещены.