Записи с меткой «интегралов»

Пакет вычислительных функций Calculus

Пакет вычислительных функций Calculus
 
Пакет расширения Calculus содержит представительный набор функций для решения дифференциальных уравнений, задания функций единичного скачка и импульса, выполнения операций с векторами, преобразований Фурье и Лапласа, выполнения спектрального анализа и синтеза, расширенного вычисления пределов и проведения аппроксимаций аналитических функций. Для открытия пакета используется команда Calculus`
Решение дифференциальных уравнений — DSolvelntegrals
Многие нелинейные дифференциальные уравнения не имеют общего решения. В под-пакете DSolvelntegrals определены функции, позволяющие найти решения в форме полного интеграла:

  • Completelntegral [eqn, u [х, у,…], {х, у…} ] — создает полный интеграл для дифференциального уравнения, касательного к и [х, у,…];
  • Differential Invariants [ {eqnsl, eqns2,…}, {u [х] , v [х] ,…}, х} — возвращает список дифференциальных инвариантов для простых переменных {u[x] ,v[x] ,…} и х;
  • Differential Invariants [ {eqnsl, eqns2,…}, {u, v,…}, х} — возвращает список дифференциальных инвариантов для простых переменных {u, v,…} и х;

Применение этих функций поясняют следующие примеры:
<<Calculus`DSolvelntegrals`
Completelntegral[
Derivative[0, 1][u][х, у] == (u[x, у] +
x^2*Derivative[l, 0][u][x, y]^2)/y, u[x,y], {х,у}]
Completelntegral[-u[x, у] +
(2 + y)*Derivative[0, 1][u] [x, y] +
x*Derivative[l, 0][u][x, y] + 3*Derivative[l, 0][u][x, y]^2 == 0,
u[x,y], {x,y}, IntegralConstants->F]
Differentiallnvariants[
{U`[X] == -(U[X] (U[X] +V[X])),
V`-[x] == V[x] (u[x] +V[x])},{u, v}, x]
Дельта-функция Дирака — DiracDelta
В подпакете DiracDelta системы Mathematica 3 задано определение двух полезных функций Дирака:

  • UnitStep [х] — возвращает функцию с единичным скачком при х = 0 (дает значение 0 при х < 0 и 1 при х > 1);
  • DiracDelta [x] — возвращает дельта-функцию Дирака, которая является импульсом с единичной площадью, бесконечно малой шириной в точке х = 0 и бесконечно большой амплитудой.

Рисунок поясняет применение этих функций. Функция UnitStep имеет простую графическую иллюстрацию, тогда как построение графика функции DiracDelta в принципе невозможно — эта функция представляет собой линию бесконечно большой высоты в точке х — 0. Обратите внимание на то, что интеграл от функции Дирака при интегрировании от -°° до +°° равен 1.
Обе описанные функции широко применяются при решении задач автоматического регулирования и при математическом моделировании систем и устройств. Поэтому в системе Mathematica 8 они перешли в разряд встроенных функций.
Улучшенное вычисление пределов — Limit
Подпакет Limit не создает новых функций. Он просто переопределяет встроенную функцию Limit, так что ограничимся примерами его применения:
<<Calculus` Limit`
Limit[Е^х^х/ Е^х^(2 х), x->Infinity]
0
Limit [Е^х^х— Е^х^ (2 х) , x->Infinity]
-бесконечность
Limit[E:x ExpIntegralE[2, ArcTan[E^x]- Pi/2] -E^x- x, x->Infinity]
1 — EulerGamma — I л
Limit[Zeta[l+x, v] — 1/x, x->0]
-PolyGamma[0, v] ,
Limit[x^0 PolyGamma[2,x], x->Infinity] .
0
Limit[x^2 PolyGamma[2,x], x->Infinity]
-1
Limit[x^3 PolyGamma[2,x], x->Infinity]
-бесконечность
Работа скорректированной функции наиболее эффективна при вычислении пределов от выражений, содержащих специальные математические функции, и пределов при х, стремящемся к бесконечности.
Рациональная аппроксимация аналитических функций — Fade
Полиномиальная аппроксимация и обычное разложение функций в ряд Тейлора нередко дают слишком большую погрешность. далее…

Вложенные процедуры и интегрирование по частям

Вложенные процедуры и интегрирование по частям
Теперь мы подошли к важному моменту, о котором читатель наверняка уже давно догадался — в составляемых пользователем процедурах можно использовать ранее составленные им (или кем-то еще) другие процедуры! Таким образом, Maple-язык позволяет реализовать процедуры, вложенные друг в друга. Для иллюстрации применения вложенных процедур рассмотрим операцию интегрирования по частям. Пусть нам надо вычислить интеграл:

где р(х) — выражение, представляющее полином.
Приведенный ниже пример подготовлен в реализации Maple 15 [38]. Вначале подготовим процедуру IntExpMonomialR, реализующую вычисление уже рассмотренного ранее интеграла, но рекурсивным способом:
 
Теперь составим процедуру для вычисления по частям нашего интеграла:

В этой процедуре имеется обращение к ранее составленной процедуре IntExpMonomialR. Обратите внимание на то, что в процедуре введено предупреждение об определенных проблемах, связанных с использованием функции degree (сообщение начинается с символов ###). Тем не менее процедура работает, в чем убеждают по крайней мере следующие примеры:

В заключение остается отметить, что данный пример в Maple V R4 дает неточный результат, хотя никаких сообщений об ошибках не выводится.

Структура систем Mathematica и их идеология

Структура систем Mathematica и их идеология
Структура систем Mathematica
Следует отметить, что скромные (в смысле аппаратных требований) версии системы Mathematica 2.2.2 по сей день производятся фирмой Wolfram и используются в основном в системе образования. Они продаются по ценам в несколько раз меньшим, чем последующие реализации 3 и 4. Сейчас версии системы для IBM-совместимых ПК Mathematica 2, 3 и 4 распространяются в России на оптических дисках. Это намного повышает их доступность, хотя нередки случаи поставки не вполне работоспособных систем на дисках сомнительного происхождения.
Общая структура систем Mathematica (всех версий) представлена.
Центральное место в системах класса Mathematica занимает машинно-независимое ядро математических операций — Kernel. Для ориентации системы на конкретную машинную платформу служит программный интерфейсный процессор Front End. Именно он определяет, какой вид имеет пользовательский интерфейс системы. В этой главе далее будет описан интерфейсный процессор для ПК с массовыми операционными системами Windows 95/98/NT. Разумеется, интерфейсные процессоры систем Mathematica для других платформ могут иметь свои нюансы, но особых различий с описанным интерфейсным процессором у них нет.
Любопытны данные об объеме ядра разных реализаций системы Mathematica, приведенные в книге Стивена Вольфрама:

Система

Mathematica 1

Mathematica 2

Mathematica 3

Mathematica 8

Число строк на языке С

150 000

350 000

600 000

800 000

Увеличение объема ядра в системе Mathematica 8 позволило перенести в ядро ряд функций из пакетов расширения. Ядро системы тщательно оптимизировано, что повысило скорость выполнения большинства команд.
Ядро сделано достаточно компактным с тем, чтобы любая функция из него вызывалась достаточно быстро. Для расширения набора функций служит библиотека (Library) и набор пакетов расширения (Add-on Packages). Пакеты расширений готовятся на собственном языке программирования систем Mathematica и являются главным средством расширения возможностей системы и их адаптации к решению конкретных классов задач пользователя. Кроме того, системы имеют встроенную электронную справочную систему — Help. далее…