Записи с меткой «качестве»

Запуск программы

Запуск программы
Передача данных из OrCAD Layout в SPECCTRA выполняется в следующей последовательности.
1. В OrCAD Layout создается файл ПП с нанесенными компонентами и электрическими связями и контуром размещения компонентов/трассировки проводников в виде непрерывной линейно-ломаной линии (барьер типа Board outline, наносится по команде Tools>Obstacle>Select Tool). В базе данных ПП должны быть определены все необходимые слои, КП и ПО. Файл ПП должен быть сохранен в бинарном формате (расширение имени по умолчанию МАХ). При этом следует иметь в виду, что в SPECCTRA передается информация о правилах трассировки всех цепей (ширина трасс и допустимые зазоры), которую, однако, можно изменить средствами SPECCTRA. далее…

Разложение функций в ряды

Разложение функций в ряды
 
Разложение функций в ряды Тейлора и Маклорена
Одна из широко распространенных математических задач представления данных — разложение заданной аналитической функции в степенной ряд Тейлора относительно некоторой узловой точки с абсциссой хО. Такой ряд нередко проще самой функции (в том смысле, что не требует вычисления даже элементарных функций и вычисляется с помощью только арифметических операций) и дает единообразное представление для разлагаемых функций в виде обычных степенных многочленов.
Большинство достаточно гладких функций, не имеющих разрывов в области р"аз-ложения, довольно точно воспроизводятся рядом Тейлора. Как правило, такие разложения достаточно просты в окрестностях узловой точки разложения.
Для разложения в ряд используются следующие функции системы Mathematical

  • Series[f, {х, х0, п}]— выполняет разложение в степенной ряд функции f в окрестности точки х=х0 по степеням (х-х0) ^ n;
  • Series [f, {х, х0, nх}, {у, у0, nу}] — последовательно ищет разложения в ряд сначала по переменной у, затем по х;
  • SeriesCoef ficient [s,n] — возвращает коэффициент при переменной n-й степени ряда s;
  • SeriesData [х, х0, {а0, al,…}, nmin, nmax, den] —представляет степенной ряд от переменной х в окрестности точки х0. Величины ai являются коэффициентами степенного ряда. Показатели степеней (х-х0) представлены величинами nmin/den, (nmin+1) /den, …, nmax/den.

Суть разложения функции в степенной ряд хорошо видна из разложения обобщенной функции/(д:), представленного на (выходные ячейки имеют стандартный формат).
В первом примере разложение идет относительно исходной точки х0=0, что соответствует упрощенному ряду Тейлора, часто называемому рядом Маклорена. Во втором случае разложение идет относительно исходной точки х0, отличной от нуля. Обычно такое разложение сложнее и дает большую остаточную погрешность. далее…

Дополнительные функции для решения уравнений

Дополнительные функции для решения уравнений
Имеется также ряд дополнительных функций, которые используются описанными ранее функциями и также могут применяться при решении нелинейных уравнений:

  • Auxiliary [v] — применяется модулем Solve для указания того, что переменная v должна использоваться функцией Roots для результирующих решений, но соответствующие значения v не должны быть включены в окончательный ответ;
  • Eliminate [eqns, vars] — исключает переменные vars из системы уравнений eqns;
  • FindRoot [Ihs == rhs, {x, x0}] — ищет численное решение уравнения Ihs == rhs, начиная с х = x0;
  • MainSolve [eqns] — основная функция для преобразования системы уравнений. Ее вызывают Solve и Eliminate. Уравнения должны быть представлены в форме Ihs == rhs. Они могут объединяться с помощью && и | |. MainSolve возвращает False, если не существует решения уравнений, и возвращает True, если все значения переменных являются решениями. MainSolve перестраивает уравнения, применяя определенные директивы;
  • MainSolve [eqns, vars, elim, rest] — пытается перестраивать уравнения eqns так, чтобы найти решения для переменных vars и исключить переменные elim. Список rest может включаться для указания порядка исключения любых остальных переменных;
  • NRoots [lhs==rhs, var] — возвращает список численных приближений корней полиномиального уравнения;
  • Residue [ехрr, {х, х0 } ] — ищет вычет ехрг в точке х = х0;
  • SolveAlways [eqns, vars] — возвращает значения параметров, которые превращают уравнения eqns в тождества для всех значений переменных vars.

Примеры использования некоторых из этих функций показаны на рис. 4.19.
В целом надо отметить, что система Mathematica обладает обширными средствами для решения уравнений и их систем. Умение их применять — залог правильного и эффективного решения сложных математических задач, относящихся к классу решения уравнений.
Графическая иллюстрация и выбор метода решения уравнений
При рассмотрении приведенных выше примеров может сложиться благодушное впечатление о том, что решение нелинейных уравнений может производиться автоматически и без размышлений. Но это далеко не так — представленные выше примеры просто подобраны так, что они имеют решение с помощью соответствующих функций. далее…

Уравнения и системы уравнений

Уравнения и системы уравнений
 
Решение уравнений
Многие математические задачи сводятся к решению в общем случае нелинейных уравнений вида f(x) = 0 или f(x) = expr.
В системе Mathematica они обозначаются как eqns (от слова equations — уравнения). Разумеется, могут решаться и системы, состоящие из ряда таких уравнений.
Для решения уравнений (как одиночных, так и систем) в численном и символьном виде Mathematica имеет функцию Solve:

  • Solve [eqns, vars] — предпринимает попытку решить уравнение или систему уравнений eqns относительно переменных vars;
  • Solve [eqns, vars, elims] — пытается решать уравнения eqns по переменным vars, исключая переменные elims.

Входные параметры этой функции могут быть представлены списками или записаны выражениями через объединительный знак«&&». В eqns в качестве знака равенства используется знак «= =». Примеры применения функции Solve представлены на.
Обратите внимание на то, что в определенных ситуациях система подсказывает тонкости решения, выдавая предупреждающие сообщения. далее…