Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
легко | Учебники

Записи с меткой «легко»

Интерактивный ввод матриц

Интерактивный ввод матриц
Для интерактивного ввода матриц можно, определив размерность некоторого массива, использовать функцию entermatrix:
> А:=аггау(1..3,1..3):
А :=аггау(1 ..3,1 .. 3, [ ])
После исполнения этого фрагмента документа диалог с пользователем имеет следующий вид:
 

 

Основные функции для задания векторов и матриц
В библиотечном файле Unalg имеются следующие функции для задания векторов и матриц: 

  • vector(n,list) — сoздание вектора с n элементами, заданными в списке list;
  •  matrix(n,m,list) — создание матрицы с числом строк n и столбцов m с элементами, заданными списком list.

Ниже показано применение этих функций:

Обратите внимание на последние примеры — они показывают вызов индексированных переменных вектора и матрицы.
Функции для работы с векторами и матрицами
Для работы с векторами и матрицами Maple 15 имеет множество функций, входящих в пакет linalg. Ограничимся приведением краткого описания наиболее распространенных функций этой категории.
Операции со структурой отдельного вектора V и матрицы М: 

  •  coldim(M) — возвращает число столбцов матрицы М; 
  •  rowdim(M) — возвращает число строк матрицы М;
  •  vectdim(V) — возвращает размерность вектора V;
  •  col(M,i) — возвращает i-й столбец матрицы М;
  •  row(M,i) — возвращает i-ю строку матрицы М;
  •  tninor(M,i, j) — возвращает минор матрицы М для элемента с индексами i и j;
  •  delcols(M,i.. j) — удаляет столбцы матрицы М от i-roдо j-ro;
  •  del rows (V,i..j) — удаляет строки матрицы М от i-й до j-й;
  •  extend (М, т, n,х) — расширяет матрицу М на m строк и n столбцов с применением заполнителя х.

Основные векторные и матричные операции:

  •  dotprod(U,V) — возвращает скалярное произведение векторов U и V;
  •   crossprod(U,V) — возвращает векторное произведение векторов U и V;
  •   norm(V) или norm(M) — возвращает норму вектора или матрицы;
  •  copyinto(A,B,i, j) — копирует матрицу А в В для элементов последовательно от i до j;
  •  concat(Ml,M2) — возвращает объединенную матрицу с горизонтальным слиянием матриц Ml и М2;
  •  stack(Ml,M2) — возвращает объединенную матрицу с вертикальным слиянием Ml и М2;
  •  matadd(A,B) и evalm(A+B) — возвращает сумму матриц А и В;
  •  multlply(A,B) и evalm(A&*B) — возвращает произведение матриц А и В;
  •  adjoint (М) или adj(M) — возвращает присоединенную матрицу, такую что M?adj(M) дает диагональную матрицу, определитель которой есть det(M);
  •  charpoly(M,lambda) — возвращает характеристический полином матрицы М относительно заданной переменной lambda;
  •  det(M) — возвращает детерминант (определитель) матрицы М;
  •  Eigenvals(M,vector) — инертная форма функции, возвращающей собственные значения матрицы М и (при указании необязательного параметра vector) соответствующие им собственные векторы;
  •  jordan(M) — возвращает матрицу М в форме Жордана;
  • hermite(M) — возвращает матрицу М в эрмитовой форме;
  •  trace(M) — возвращает след матрицы М;
  •  rank(M) — возвращает ранг матрицы М;
  •  transpose(M) — возвращает транспонированную матрицу М;
  •  inverse(M) или evalm(l/M) — возвращает матрицу, обратную к М;
  •  singularvals(A) — возвращает сингулярные значения массива или матрицы А.

Приведем примеры применения некоторых из этих функций:
 

Читатель, понимающий суть матричных вычислений, легко справится с тестированием других функций, входящих в пакет linalg. В приведенных примерах полезно обратить внимание на то, что многие матричные функции способны выдавать результаты вычислений в аналитическом виде, что облегчает разбор выполняемых ими операций.

Решение систем линейных уравнений
Ниже представлен простой пример составления и решения трех систем линейных уравнений с применением функций, входящих в пакет linalg:

А теперь рассмотрим пример решения матричного уравнения в символьном виде:

Следующий пример показывает решение более сложной системы линейных уравнений с комплексными коэффициентами:

На этот раз решение получено использованием функций умножения матриц и вычисления обратной матрицы в виде X = А-1 В, то есть в матричном виде. В конце примера показано преобразование результатов с целью их получения в обычной форме комплексных чисел с частями, представленными в форме чисел с плавающей точкой.
Пакет линейной алгебры с алгоритмами NAG LinearAlgebra
Назначение и загрузка пакета LinearAlgebra
В последние годы разработчики систем символьной математики осознали, что малая скорость выполнения векторных и матричных операций при решении задач линейной алгебры оборачивается потерей заметной части рынка систем компьютерной математики. далее…

Пакеты линейной алгебры и функциональных систем

Пакеты линейной алгебры и функциональных систем
 
Основные определения линейной алгебры
Прежде чем перейти к рассмотрению обширных возможностей пакетов Maple 15 по части решения задач линейной алгебры, рассмотрим краткие определения, относящиеся к ней.
Матрица (m х n) — прямоугольная двумерная таблица, содержащая m строк и n столбцов элементов, каждый из которых может быть представлен числом, константой, переменной, символьным или математическим выражением (расширительная трактовка матрицы).
Квадратная матрица — матрица, у которой число строк m равно числу столбцов n. Пример квадратной матрицы размера 3×3:

Сингулярная (вырожденная) матрица — квадратная матрица, у которой детерминант (определитель) равен 0. Такая матрица обычно не упрощается при символьных вычислениях. Линейные уравнения с почти сингулярными матрицами могут давать большие погрешности при решении.
Единичная матрица — это квадратная матрица, у которой диагональные элементы равны 1, а остальные элементы равны 0. Ниже представлена единичная матрица размера 4×4:

Сингулярные значения матрицы А — квадратные корни из собственных значений матрицы АТ=А, где Ат — транспонированная матрица А (см. ее определение ниже);Транспонированная матрица — матрица, у которой .столбцы и строки меняются . местами, то есть элементы транспонированной матрицы удовлетворяют условию AT(i,j)=A(j,i). Приведем простой пример. Исходная матрица:

Транспонированная матрица:

Обратная матрица — это матрица М-1, которая, будучи умноженной на исходную квадратную матрицу М, дает единичную матрицу Е.
Ступенчатая форма матрицы соответствует условиям, когда первый ненулевой элемент в каждой строке есть 1 и первый ненулевой элемент каждой строки появляется справа от первого ненулевого элемента в предыдущей строке, то есть все элементы ниже первого ненулевого в строке — нули.
Диагональ матрицы — расположенные диагонально элементы Ai,i  матрицы А. В приведенной ниже матрице элементы диагонали представлены заглавными буквами:

Обычно указанную диагональ называют главной диагональю — для матрицы А, приведенной выше, это диагональ с элементами А, Е и L. Иногда вводят понятия под диагоналей (элементы d и  k) и над диагоналей (элементы b и f). Матрица, все элементы которой, расположенные кроме как на диагонали, под диагонали и над диагонали, равны нулю, называется ленточной.
Ранг матрицы — наибольший из порядков отличных от нуля миноров квадратной матрицы.
След матрицы — сумма диагональных элементов матрицы.
Определитель матрицы — это многочлен от элементов квадратной матрицы, каждый член которого является произведением n элементов, взятых по одному из каждой строки и каждого столбца со знаком произведения, заданным четностью перестановок:

где M1<j> — определитель матрицы порядка n — 1, полученной из матрицы А вычеркиванием первой строки и j-гo столбца. далее…

Пакет combstruct

Пакет combstruct
Еще девять функций, относящихся к структурам комбинаторики, содержит пакет combstruct:
> with(combstruct):
[allstructs, count, draw,finished, gfeqns, gfseries, gfsolve, iterstritcts, nextstruct]
Эти функции служат для создания случайно однородных объектов, принадлежащих заданному комбинаторному классу. Ограничимся приведением примеров применения этих функций:
> alltructs(Subset({one,two}));
{{ },{one, two}, {two}, {one}}
 > anstructs(Permutation([x,y,z]),size=2):
[[x,y],[x,z],[y,x],[y,z],[z,x],[z,y]] 
> count(Subset({l,2,3}));

> draw(Combiination(5),size=4);
{1,3,4,5}
> count(Permutation([a,a,b])): .
3
> 1t :=iterstructs(Permutation([a,a,b]),size=2);
it := table([finished = false, nextvalue = (pmc() … endproc )])
 > draw(Partition(9));
[2,2,2,3]
 > allstructs(Composition(3), size=2):
[[2,l],[l,2]]
Для более полного знакомства с этими специфическими функциями обратитесь к справочной системе.
Пакет финансово-экономических функций finance
Пакет финансово-экономических расчетов открывается командой:
 > with(finance)
[amortization, annuity, blackscholes, cashflows, effectiverate,futurevalue, growingannuity, growingperpetuity, levelcoupon, perpetuity, presentvalue, yieldtomaturity]
Этот пакет представлен рядом указанных выше функций в двух формах:
function(args)
finance[function](args).
Благодаря правилам задания аргументов можно реализовать практически все известные финансово-экономические расчеты, такие как амортизация, накопления и платежи по вкладам и т. д. В свете задач рыночной экономики эти функции полезны для приверженцев решения всего на свете без выхода из оболочки Maple. Все же надо отметить, что малозаметные тонкости в определении финансово-экономических функций затрудняют их применение. далее…

Итеративный, нелинейный не процесс

Итеративный, нелинейный не процесс
Традиционно архитектурное проектирование в САПР подражало использованию обычных инструментов — карандаша, пера, бумаги и т.д. Более развитое программное обеспечение, однако, отбрасывает это подражание и внедряет свои собственные методы архитектурного проектирования. Эти методы нелинейны и основаны на тесной интеграции проектирования.
Подготовки иллюстративных материалов, документировании и проработки этапов. Такая концентрическая модель выполнения работы предоставляет клиенту и архитектору гораздо больше возможностей по рассмотрению вариантов и внесению изменений в проект, отслеживая при этом все последствия вне-сенных изменений. Например, на стадии эскизного проектирования у архитек-
тора уже будет детальная и точная информация, ранее доступная только на этапе детального проектирования. И наоборот, фундаментальные изменения в проект могут быть внесены достаточно поздно, не нарушая значительно график выполнения работ, так как 2-мерные рабочие чертеж и являются по своей сути проекциями, полученными автоматически из исходной 3х-мерной модели. далее…

Дополнительные программы для ArchiCAD

Дополнительные программы для ArchiCAD
Для системы ArchiCAD была создана масса крутых приложений, которые весьма существенно упрощают жизнь архитектору, дизайнеру, риэлтеру.
Дополнительные программы: PlayBack для Windows
PlayBack является сервисным приложением, позволяющим просматривать любую последовательность растровых неподвижных кадров (.BMS), созданных командой ArchiCAD.
Данное приложение также позволяет осуществлять преобразование файлов рисунков в формат последовательности растровых изображений. Управляющее окно программы содержит ряд кнопок, которые по своей форме напоминают кнопки Видеомагнитофона: начать показ, остановиться, перейти на последний кадр, перейти на первый кадр, показать следующий кадр, показать предыдущий кадр. Вы также можете установить скорость просмотра кадров и перейти на любой кадр.
Вы можете изменить размер окна, в котором воспроизводятся кадры.
Вы можете уменьшить воспроизводимую часть изображений, однако PlayBack не предоставляет возможность увеличивать или уменьшать размеры cамих изображений. Вы можете увеличить окно воспроизведения изображений до размеров экрана, нажав для этого кнопку максимизации. .
Дополнительные программы: FIXER
Эта программа восстанавливает так называемые ошибки в реквизитах. Это наиболее часто встречающиеся ошибки. далее…

Комплексные числа

Комплексные числа
Maple 15, естественно, может работать с комплексными числами. Мнимая единица в комплексном числе (корень квадратный из -1) обозначается как I. Функции Re(x) и Im(x) возвращают действительную и мнимую части комплексных чисел. Примеры задания комплексного числа и вывода его действительной и мнимой частей представлены ниже:

Комплексные числа обычно представляют на так называемой комплексной плоскости, у точек которой координата х задает действительную часть комплексного числа, а у (мнимая ось) показывает мнимую часть такого числа. показано задание в виде радиус-векторов комплексного числа z = 4+3I, -z и комплексно-сопряженного числа 4-3I.
Окружность радиуса abs(z)=sqrt(a2 + b2) представляет абсолютное значение комплексного числа z=a+b*I. Она является геометрическим множеством комплексных чисел, образованных концом вращающегося радиус-вектора числа z вокруг его начала в точке (0, 0) комплексной плоскости. Позже мы рассмотрим ряд функций для работы с комплексными числами.
Контроль за числами
Числа могут служить объектами ввода, вывода и константами, входящими в математические выражения. Функция type(x, numeric) позволяет выяснить, является ли х числом. Если является, то она возвращает логическое значение true (истина), а если нет, то false (ложь). далее…