Записи с меткой «математические»

Работа с файлами и документами

Работа с файлами и документами
 
Операции с файлами

Система Maple работает с документами в стиле notebooks («блокноты» или «записные книжки»). Как было показано в уроке 1, документы содержат текстовые и формульные блоки, результаты вычислений, графики разного типа и другие компоненты. Документы могут готовиться с нуля или существовать в готовом виде — подготовленные кем-то ранее. Хранятся документы на внешних устройствах памяти в виде файлов. Файлом называют имеющую имя упорядоченную совокупность данных, размещенную на том или ином носителе — обычно на жестком, гибком или компакт-диске.
В Maple 15 используются файлы различных форматов, который указывается расширением файла (знак * означает произвольное имя файла):

  •  *.ms — файлы документов для систем с графическим интерфейсом (Windows/ Macintosh);
  •  *.msw — файлы документов (Worksheets);
  •  *.txt — текстовые файлы (включая формат Maple-текст);
  •  *.tex — файлы в формате LaTeX;
  •  *.ind и *.lib — файлы библиотек;
  • *.т — файлы внутреннего Maple-языка.

Файлы документов содержат все необходимые данные для правильного отображения содержимого документа в окне редактирования с указаниями координат расположения блоков, фактического содержания и характера выполняемых операций, форматов предоставления информации и т. д. [Таким образом, файл содержит кроме текста, отображаемого на рабочем листе, специальные команды, адресованные Maple, аналогично файлам HTML, имеющим теги, предназначенные для интерпретации браузером.
Предусмотрена возможность записи документов и в особом формате LaTeX, предназначенном для создания книг и статей по математике. Текстовые файлы (с расширением .txt) можно просматривать и редактировать текстовыми редакторами, работающими с ASCII-кодировкой.
Важно отметить, что даже при записи документов со сложными рисунками используется не прямая запись их растровой или векторной копии, а сохранение данных для построения графиков. Поэтому размеры файлов Maple 15 невелики и их легко передавать по современным средствам телекоммуникаций, например по сети Интернет. далее…

Контекстная панель инструментов для трехмерных графиков

Контекстная панель инструментов для трехмерных графиков
Свой вид контекстной панели имеют и трехмерные графики. Назначение ее элементов представлено.
С помощью контекстной панели трехмерных графиков можно задать 7 стилей построения трехмерных графиков и 4 стиля вывода координатных осей. Возможны следующие стили трехмерных графиков (группа из семи кнопок в середине панели): функциональная окраска с видимыми линиями каркаса, функциональная окраска без линий каркаса, функциональная окраска с контурными линиями, цветной каркас с видимыми линиями, цветные контурные линии, цветной каркас со всеми (в том числе невидимыми) линиями и поверхность, построенная точками.
Два расположенных слева счетчика позволяют задавать нужный угол обзора, причем Maple сразу же отражает заданный поворот построенной фигуры. Ее также можно вращать мышью, поместив указатель в область графика и держа нажатой левую кнопку. При этом счетчики будут отображать изменяющиеся при перемещении мыши углы обзора. Это очень удобное средство для наблюдения за деталями трехмерных поверхностей и фигур, которые строит функция plot3d. далее…

Пример решения системы линейных уравнений

Пример решения системы линейных уравнений
Приведем еще один характерный пример — решение системы линейных уравнений с помощью функции solve. Обратите внимание на форму задания уравнений и выдачи результатов и поразительную естественность решения задачи. Значение переменной z выделено, где видно, что Maple отображает его поле под панелью инструментов.
Слова solve, diff и int с их аргументами являются именами встроенных в систему функций, возвращающих символьные значения результатов. Нормальному пользователю может стать дурно, если вспомнить, что таких функций с их вариантами система Maple 15 имеет около трех тысяч! Да к тому же многие функции (та же solve для решения уравнений) подчас могут применяться во многих случаях и имеют массу параметров и директив для уточнения направлений решения и расширения областей применения.
В утешение можно отметить три важных обстоятельства:

  •  мало кто на практике использует из всей этой массы функций более чем несколько десятков;
  •  названия и формы представления многих функций интуитивно предсказуемы;
  •  наконец, система имеет превосходную справочную базу данных, с помощью которой при определенном терпении (и непременном желании) можно разобраться с синтаксисом любой функции.

Необходимые функции и правила их преобразования система черпает в библиотеке размером около 40 Мбайт (она содержит файлы maple.hdb, maple.lib, maple.ind и maple.cmd). Это иногда занимает заметное время, особенно при первом использовании определенной группы операторов (например, тригонометрических). При повторном использовании этой группы система заметно убыстряется, так как использует уже загруженные средства.
Повышение эффективности работы с системой
Работа с панелью инструментов
Пока что мы при проведении вычислений пользовались лишь простейшими средствами управления системой — вводом выражений и текстовых надписей с клавиатуры. Теперь пора расширить представления о работе с Maple. Прежде чем начать работать с ее меню, надо отметить, что для многих (особенно начинающих) пользователей оказывается удобнее использовать кнопки, расположенные на панелях инструментов, которые находятся прямо под строкой меню. далее…

Символьные вычисления

Символьные вычисления
Простой пример символьных вычислений
Maple 15 открывает обширные возможности выполнения символьных (аналитических) вычислений. Начнем с простого примера — требуется найти сопротивление трех параллельно включенных резисторов R1, R2 и R3 произвольной величины. Из курса электротехники известно, что можно задать следующее равенство, определяющее суммарное сопротивление R0:

Теперь достаточно использовать функцию решения уравнений solve, чтобы найти значение R0 в общей аналитической форме:

Нетрудно проверить, что результат может быть получен и в численном виде для конкретных значений R1, R2 и R3: > Rl:=a.:R2:-2:R3:=3:RO:

 

Типовые символьные вычисления
показано несколько примеров выполнения символьных вычислений математического характера: преобразование тригонометрического выражения с помощью функции упрощения simplify, вычисление суммы ряда функцией sum и вычисление неопределенного интеграла функцией int.
Обратите внимание на результат выполнения последнего примера. Он выделен. Выделение можно осуществить протаскиванием указателя мыши с нажатой левой кнопкой. далее…

Управление формой представления документа

Управление формой представления документа
Форматы математических выражений
Приведенные выше примеры реализуют обычную форму представления документа. В нем имеются текстовые комментарии (для их ввода надо нажать клавишу F5), сформулированные на Maple-языке задания на вычисления, результаты вычислений в виде обычных математических формул и, там где это указано, графики.
Эта выстраданная форма представления документов является компромиссом между наглядностью и простотой ввода исходных данных. Может показаться, что в этом отношении намного дальше продвинулись системы класса Mathcad — у них исходные данные и описание алгоритмов вычислений давно задаются в виде естественных математических символов и формул. За исключением, правда, функций символьных вычислений, пока не имеющих общепринятых специальных математических символов и вводимых путем указания их имен.
Однако это достоинство кажется явным лишь на первый взгляд. Ввод сложных формул довольно трудоемок и требует специфических навыков, отсутствующих даже у самых опытных пользователей. далее…

Обработка и индикация ошибок

Обработка и индикация ошибок
При работе с системой Maple 15 надо строго придерживаться правил корректного ввода выражений и иных объектов Maple-языка, называемых синтаксисом языка. Однако, как гласит русская пословица, не ошибается только тот, кто ничего не делает. Даже у опытного пользователя возможны ошибки в ходе ввода выражений и задания алгоритмов вычислений.
Алгоритмические, но синтаксически корректные ошибки часто могут не распознаваться системой. Например, если в выражении a*sin(x) вы вместо аргумента х взяли аргумент b, то есть записали a*sin(b), то такую ошибку Maple 15 распознать не может, ибо синтаксически как a*sin(x), так и a*sin(b) абсолютно корректны. Если вы перепутаете синус с косинусом и запишете a*cos(x), то такая ошибка также не будет распознана.
ПРИМЕЧАНИЕ
Ошибки в записи выражений, описывающих те или иные алгоритмы вычислений, не  нарушающие синтаксическую корректность, системой Maple 15 не распознаются. Контроль за такими ошибками целиком лежит на пользователе.
Приведем еще один характерный пример ошибки, которую Maple 15 не может распознать. далее…