Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
математике | Учебники

Записи с меткой «математике»

Преобразования Лапласа-LaplaceTransform

Преобразования Лапласа-LaplaceTransform
 
Преобразования Лапласа — важный вид интегральных преобразований. Они лежат в основе, например, символического метода расчета электрических цепей. В системе Mathematica 3 функции преобразования размещены в подпакете Laplace-Transform. Но в CKM Mathematica 8 эти функции стали встроенными.
Основными являются следующие функции этого класса:

  • LaplaceTransform[expr, t, s] — возвращает результат прямого преобразования Лапласа для выражения expr [t] в виде функции переменной s;
  • InverseLaplaceTransform[expr, s,t] — возвращает результат обратного преобразования Лапласа для выражения expr [s] в виде функции переменной t;
  • LaplaceTransform [expr, {tl, t2,…}, {s1i, s2,…} ] — возвращает результат прямого преобразования Лапласа для выражения expr [ 11, t2,… ] в виде функции переменных {s1, s2,…};
  • InverseLaplaceTransform [expr, {s1, s2,…}, {tl, t2,…} ] — возвращает результат обратного преобразования Лапласа для выражения expr [s1, s2,…] в виде функции переменных {tl, е2,…}.

Хотя имена переменных t и s можно выбирать произвольно, обычно t означает время, as — оператор Лапласа. далее…

Особые случаи вычисления интегралов

Особые случаи вычисления интегралов
При вычислении сложных интегралов, например не имеющих представления через элементарные функции, система Mathematica 2 обращалась к своим пакетам расширений в попытке найти решение, которое может быть представлено через специальные математические функции. Mathematica 3/4 уже не акцентирует внимание пользователя на своих проблемах и, как правило, выдает результат интегрирования. Однако порой он может иметь довольно необычный вид .
Эти примеры наглядно показывают, что вычисление первообразных в системе может дать результаты, далекие от тривиального вычисления неопределенных интегралов, имеющихся в обычных справочниках по математике. Кстати, и при вычислении тривиальных интегралов результат может оказаться иным, чем в справочниках, из-за различных преобразований, примененных для получения конечных формул. далее…

Вычисление производных

Вычисление производных
 
К числу наиболее часто используемых математических операций принадлежит вычисление производных функций как в аналитической, так и в символьной форме. Для этого используются следующие функции:

  • D [ f, х ] — возвращает частную производную функции f по переменной х;
  • D [f, {х, n}]— возвращает частную производную n-го порядка по х;
  • D[f, xl, х2,…] — возвращает смешанную производную;
  • Dt[f, х] — возвращает обобщенную производную функции f по переменной х;
  • Dt [ f ] — возвращает полный дифференциал f.

Название функции из одной буквы — это явно исключение из правил. Оно выбрано осознанно, в силу массовости этой операции.
Для функции D существует опция NonConstants, которая позволяет задать список объектов, находящихся в неявной зависимости от переменных дифференцирования. По умолчанию этот список пустой. Для функции Dt имеется опция Constants, которая, наоборот, указывает символы, которые являются константами (по умолчанию их список также пуст). На практике применять данные опции приходится редко. далее…

Решение систем линейных уравнений

Решение систем линейных уравнений
Приведем также примеры на решение систем линейных уравнений матричными методами. В первом из них решение выполняется в символьном виде на основании формулы X = А -1 В, где А — матрица коэффициентов системы линейных уравнений, В — вектор свободных членов. Для перемножения используется функция Dot, а для инвертирования матрицы — функция Inverse:
A:={{a,b},{c,d}}
B:={e,f}
X:=Dot[Inverse[A],B]
X
{-de/(bc+ad) -bf/(bc+ad)- ce/(bc+ad) -af/(bc+ad)}
Во втором примере для решения системы линейных уравнений используется функция LinearSolve:
LinearSolve[{{l,2},{3,4}},{7,9}]
{-5, 6}
Нередко, например в электротехнических расчетах, встречается необходимость решения систем линейных уравнений с комплексными элементами. Все описанные выше функции обеспечивают работу с комплексными числами. Следующий пример иллюстрирует решение системы линейных уравнений с комплексными данными:
А={ U+2I,2+3I},{3+4I,4+5I}}
{{1+21, 2 + 31}, {3 + 41, 4+ 51}}
В={21,3}
{21,3} X=LinearSolve[А,В]
{1/4-41, 11I/4}
Число матричных функций в системе Mathematica 3/4 ограничено разумным минимумом, позволяющим реализовать множество других, более сложных матричных функций и преобразований. Их можно найти в пакетах расширения системы, посвященных линейной алгебре.
Что нового мы узнали
В этом уроке мы научились:

  • Использовать основные классы данных системы Mathematica.
  • Выполнять арифметические вычисления.
  • Применять встроенные и пользовательские функции.
  • Получать данные об объектах.
  • Осуществлять подстановки.
  • Работать со списками.
  • Создавать массивы, векторы и матрицы.
  • Пользоваться функциями линейной алгебры

 

Операции математического анализа

  • Вычисление сумм
  • Вычисление произведений
  • Вычисление производных
  • Вычисление интегралов
  • Вычисление пределов функций
  • Решение уравнений и систем уравнений
  • Решение дифференциальных уравнений
  • Поиск максимального и минимального чисел в списке
  • Поиск максимума и минимума функции
  • Решение задач линейного программирования
  • Преобразования Лапласа
  • Z-преобразования

В этом уроке описаны основные операции математического анализа, детали которых можно найти в любом справочнике по высшей математике. Эти операции чаще всего используются при проведении математических и научно-технических расчетов и потому описаны достаточно полно
Вычисление сумм
 
Вычисление сумм в аналитическом виде
В числе операций математического анализа прежде всего надо отметить суммы
Сумма от i=min до imax по fi
В этих операциях индекс i принимает целочисленные значения от минимального (начального) imin до максимального (конечного) imax с шагом, равным +1.
Суммы и произведения легко вычисляются численными математическими системами, такие вычисления просто описываются на всех языках программирования. Однако важным достоинством систем символьной математики, включая Ма-thematica, является вычисление сумм и произведений в аналитическом виде (если это возможно) и при большом числе членов — вплоть до стремящегося к бесконечности. далее…

Изменение порядка расположения элементов в списке

Изменение порядка расположения элементов в списке
Помимо добавления в список новых данных имеется возможность изменения порядка расположения элементов в списке. Она реализуется следующими операциями:

  • Flatten [list] — выравнивает (превращает в одномерный) список по всем его уровням;
  • Flatten [list, n] — выравнивает список по п его уровням;
  • Flatten [list, n, h] — выравнивает выражения с заголовком h no n уровням;
  • FlattenAt [list, n] — выравнивает подсписок, если он оказывается п-м элементом списка list. Если n отрицательно, позиция отсчитывается с конца;
  • Sort [list] — сортирует элементы списка list в каноническом порядке;
  • Sort[list,p] — сортирует согласно функции упорядочения р;
  • Reverse [list] — возвращает список с обратным порядком расположения элементов;
  • RotateLeft [list] — возвращает список после однократного поворота влево;
  • RotateLeft [list, n] — возвращает список после n-кратного поворота влево;
  • RotateRight [list] — возвращает список после однократного поворота вправо;
  • RotateRight [list, n] — возвращает список после n-кратного поворота вправо;
  • Transpose [list] — осуществляет транспозицию (смену строк и столбцов) для двумерного списка;
  • Transpose [list, п] — осуществляет транспозицию n-мерного списка. Ниже приведен ряд примеров на использование этих функций.

Ввод (In)

Вывод (Out)

13={{1,2,3},{4,5,6},{7,8,9}};

{1,2,3,4,5,6,7,8,9}

Flatten [13]

 

FlattenAt[13,l]

{1,2,3,{4,5,6},{7,8,9}}

Sort[{l,5,3,4,2}]

{1,2,3,4,5}

Reverse[{l,2,3,4}]

{4,3,2,1}

RotateLeft[ {1,2,3,4,5}, 2]

{3,4,5,1,2}

RotateRight[{l,2,3,4,5} ,2]

{4,5,1,2,3}

12={{a,b},{c,d}};

 

TableForm[12]

a b c d

TableFormf Transpose [12] ]

a c d b

Изменение порядка расположения элементов в списке полезно при реализации некоторых алгоритмов. К примеру, сортировка списка ускоряет выполнение статистических расчетов и уменьшает их погрешности.
Комбинирование списков и работа с множествами
Иногда возникает необходимость комбинирования нескольких списков. Для этого используются следующие функции:

  • Complement [list, listl, list2, …] — возвращает список list с элементами, которые не содержатся ни в одном из списков listl, Iist2, …;
  • Intersection [listl, list2,…] (пересечение множеств) —возвращает упорядоченный список элементов, общих для всех списков listi;
  • Join[list1, list2,… ] — объединяет списки в единую цепочку (выполняет конкатенацию). Join может применяться к любому множеству выражений, имеющих один заголовок;
  • Union [listl, Iist2, …] (объединение множеств) — удаляет повторяющиеся элементы списков и возвращает отсортированный список всех различающихся между собой элементов, принадлежащих любому из данных списков listi. Функция обеспечивает теоретико-множественное объединение списков;
  • Union [list] — возвращает отсортированный вариант списка list, из которого удалены все повторяющиеся элементы.

Приведенные ниже примеры иллюстрируют применение функций комбинирования списков.

далее…