Warning: include(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/wp-cache-base.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 65

Warning: include_once(/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php): failed to open stream: No such file or directory in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82

Warning: include_once(): Failed opening '/var/www/iill7773/data/www/wiselab.ru/wp-content/plugins/wp-super-cache/ossdl-cdn.php' for inclusion (include_path='.:/opt/alt/php55/usr/share/pear:/opt/alt/php55/usr/share/php') in /home/u7426dd0/domains/wiselab.ru/public_html/wp-content/plugins/wp-super-cache/wp-cache.php on line 82
различного | Учебники

Записи с меткой «различного»

Преобразования Фурье

Преобразования Фурье
 
Основные понятия о спектральном анализе и синтезе
Спектральный подход (метод) лежит в основе целых направлений науки и техники. Достаточно отметить, что он плодотворно используется в технике электро- и радиосвязи, где разделение частот модулированных сигналов базируется на различии их спектров. Спектральный подход также широко используется для создания аналоговых и цифровых фильтров и для оценивания искажений сигналов в ходе их преобразования, например усиления реальными усилителями.
Схема применения спектрального подхода достаточно проста. далее…

Преобразования Лапласа-LaplaceTransform

Преобразования Лапласа-LaplaceTransform
 
Преобразования Лапласа — важный вид интегральных преобразований. Они лежат в основе, например, символического метода расчета электрических цепей. В системе Mathematica 3 функции преобразования размещены в подпакете Laplace-Transform. Но в CKM Mathematica 8 эти функции стали встроенными.
Основными являются следующие функции этого класса:

  • LaplaceTransform[expr, t, s] — возвращает результат прямого преобразования Лапласа для выражения expr [t] в виде функции переменной s;
  • InverseLaplaceTransform[expr, s,t] — возвращает результат обратного преобразования Лапласа для выражения expr [s] в виде функции переменной t;
  • LaplaceTransform [expr, {tl, t2,…}, {s1i, s2,…} ] — возвращает результат прямого преобразования Лапласа для выражения expr [ 11, t2,… ] в виде функции переменных {s1, s2,…};
  • InverseLaplaceTransform [expr, {s1, s2,…}, {tl, t2,…} ] — возвращает результат обратного преобразования Лапласа для выражения expr [s1, s2,…] в виде функции переменных {tl, е2,…}.

Хотя имена переменных t и s можно выбирать произвольно, обычно t означает время, as — оператор Лапласа. далее…

Дифференциальные уравнения

Дифференциальные уравнения
 
Решение дифференциальных уравнений в символьном виде
Дифференциальными принято называть уравнения, в состав которых входят производные функции у(х), представляющей решение уравнения. Дифференциальные уравнения могут быть представлены в различной форме, например в общеизвестной форме Коши:
у'(х) = eqn=f(x,y).
Несколько дифференциальных уравнений образуют систему дифференциальных уравнений. Решение таких систем также возможно средствами Mathematica и подробно описано в ряде книг по использованию системы [65-71]. Дифференциальные уравнения и системы дифференциальных уравнений могут быть линейными и нелинейными. Для линейных уравнений обычно существуют решения в аналитическом виде. далее…

Получение сразу нескольких корней

Получение сразу нескольких корней
Многие уравнения с тригонометрическими функциями могут иметь периодические или близкие к ним решения. К сожалению, функции Mathematica, вычисляющие корни уравнений, не способны в этом случае дать сразу несколько корней. Однако ситуация тут далеко не безнадежна — приведенный ниже пример наглядно показывает это.
Пусть требуется в интервале изменения х от 0 до 20 найти все решения уравнения
х sin(x) + х/2 — 1 = 0
График функции, представляющей левую часть уравнения, показан на 4. Хорошо видно, что он пересекает ось х семь раз, то есть имеет в интересующем нас диапазоне семь корней.
Колебательная составляющая функции обусловлена входящей в нее функцией sin(x), которая имеет нули в точках 0, n, 2n, Зn… Однако, эти значения лишь приближенные, ввиду влияния других членов уравнения.
Ключевая идея получения всех корней уравнения заключается в поиске нужных решений с помощью функции FindRoot, которой последовательно подставляются различные начальные приближения. далее…

Особые случаи вычисления интегралов

Особые случаи вычисления интегралов
При вычислении сложных интегралов, например не имеющих представления через элементарные функции, система Mathematica 2 обращалась к своим пакетам расширений в попытке найти решение, которое может быть представлено через специальные математические функции. Mathematica 3/4 уже не акцентирует внимание пользователя на своих проблемах и, как правило, выдает результат интегрирования. Однако порой он может иметь довольно необычный вид .
Эти примеры наглядно показывают, что вычисление первообразных в системе может дать результаты, далекие от тривиального вычисления неопределенных интегралов, имеющихся в обычных справочниках по математике. Кстати, и при вычислении тривиальных интегралов результат может оказаться иным, чем в справочниках, из-за различных преобразований, примененных для получения конечных формул. далее…

Арифметические вычисления с повышенной точностью

Арифметические вычисления с повышенной точностью
Важное достоинство систем символьной математики — выполнение арифметических вычислений с произвольными разрядностью и точностью. Хотя на деле они ограничены объемом ОЗУ, но для современных компьютеров с объемом ОЗУ в единицы и десятки мегабайт вряд ли можно столкнуться со случаем, когда ограничения по разрядности и точности становятся существенными.
Следующие две функции, Rationalize [х] и Rationalize [x, dx], дают приближение для числа х в виде рациональных чисел. Вторая из этих функций задает приближение с заданной точностью dx.
Mathematica может работать с большими числами и выполнять определенные операции с очень высокой точностью. Примеры, приведенные на рис. 3.3, иллюстрируют эти возможности.
Как видно из примеров представления рациональных чисел, результат приближения зависит от заданной погрешности. Чем она меньше, тем большие значения целых чисел в числителе и знаменателе результата разыскивает система. далее…