Записи с меткой «вещественных»

Функция полного упрощения FullSimplify

Функция полного упрощения FullSimplify
Функция FullSimplify, область применения которой в Mathematica 8 заметно расширена, обладает заметно большими возможностями, чем функция Simplify. В частности, она обеспечивает упрощение выражений, содержащих специальные математические функции:
Simplify [Gamma [х] *х* (х+1) * (х+2) * (х+n) ]
х(1+х) (2 + х) (n+x) Garrma[x]
FullSimplify [Gamma [х] *х* (х+1) * (х+2) * (х+n) ]
(п+ х) Garrma[3 + х]
Simplify[Tan[x] , ComplexityFunction-> (Count[{#l}, _Tan, \ [Infinity]]*;)]
Tan[x]
FullSimplify [Tan [x] , ComplexityFunction -> (Count[{#l}, _Tan,
\ [Infinity]] &)]
Как видно из этих примеров, функция FullSimplify обеспечивает упрощение даже в том случае, когда функция Simplify пасует. Неплохо упрощаются тригонометрические функции, особенно при использовании опции Complexity-Function, подсказывающей путь упрощения.
В то же время нельзя не отметить, что теоретический фундамент упрощения выражений находится лишь в начале своего возведения, так что не стоит удивляться, если отдельные выражения не будут упрощаться — даже в том случае, когда это в принципе возможно. Более того, с позиций истинного математика функции Simplify и FullSimplify делают не совсем понятно что. Тем не менее, часто эти функции позволяют получить вполне приемлемую, хотя вовсе не единственную и не самую простую форму упрощаемого выражения.
Раскрытие и расширение выражений — функции класса Expand
Расширение, или раскрытие, выражений — еще одна типовая операция компьютерной алгебры. далее…

Другие манипуляции с выражениями

Другие манипуляции с выражениями
В процессе преобразования выражений с ними возможны и иные манипуляции. Наиболее важные из них выполняются следующими функциями:

  • Append [expr, elem] — возвращает ехрг с дополнением elem;
  • AppendTo [s, elem] — добавляет elem к значению s и присваивает s новое значение;
  • Apply [f, expr, levelspec] — возвращает ехрг, замещая заголовки в тех частях ехрг, которые указаны спецификацией уровня levelspec;
  • Cancel [expr] — возвращает ехрг с сокращением общих множителей числителя и знаменателя;
  • Cases [expr, pattern, levelspec] — возвращает список всех частей выражения expr на уровнях, указанных спецификацией levelspec, которые соответствуют шаблону pattern;
  • Chop [expr] — присваивает значение 0 тем приближенным вещественным числам в выражении expr, абсолютные величины которых меньше 10 -10 ;
  • Chop [expr, tol ] — присваивает значение 0 тем приближенным вещественным числам в выражении expr, абсолютные величины которых меньше tol;
  • Replace [expr, rules] — возвращает expr с подстановкой, заданной правилом или списком правил rules;
  • ReplaceAll — используется в виде expr /. rules и возвращает expr с подстановками, заданными правилом или списком правил rules;
  • ReplacePart [expr, new, n] — возвращает выражение, в котором п-я часть expr заменена на new;
  • ReplacePart [expr, new, {i, j,…}] — заменяет на new часть в позиции {i, j,…};
  • ReplacePart [expr, new, {{il, jl,…}, {i2, j 2 ,…},…}] — заменяет на new части в нескольких позициях выражения;
  • ReplaceRepeated — применяется в виде expr //. rules и неоднократно выполняет замещения до тех пор, пока expr не перестанет изменяться.

Действие этих функций достаточно очевидно и поясняется следующими примерами.

Ввод (In)

Вывод (Out)

Append [a + с, b]

a+ b+ с

х = {а, b, с}

{a, b, c}

AppendTo [ х , 15 ]

{a, b, c, 15}

x

{a, b, c, 15}

Apply[f, а А 2 + b ^ 2, 2]

f[a, 2] +f[b, 2]

Cancel [(z-1) ^ 2/ (z — 1) ]

-1 + Z

Cases[{a, 3.5, 2, 5, "HELLO"}, _Integer]

{2, 5}

Exp[N[-лI]]

-1. — 1. 22461 x 10 -16 I

Chop[%]

-1.

Ехр[N[-лI]]

-1. — 1. 22461 x10 16 I

Chop[%, 1*10^-10]

-1.

Replace[s ^ 2, s ^ 2 -> a]

a

s^2 /. s -> a

a 2

Заинтересованному в таких манипуляциях читателю рекомендуется просмотреть множество примеров, имеющихся в справочной системе Mathematica, и, разумеется, попробовать свои собственные примеры.
Контроль выражении
При создании программного обеспечения на языке Mathematica, а иногда и в ходе диалоговой работы с системой необходим контроль за некоторыми свойствами выражений. Следующие функции обеспечивают такой контроль:

  • AtomQ [expr] — возвращает True, если выражение ехрг не может быть разложено на подвыражения и является атомарным, и возвращает False в противном случае;
  • FreeQ [expr, form] — возвращает значение True, если в выражении ехрr отсутствует подвыражение, совпадающее с form, в противном случае возвращает False;
  • FreeQ[expr, form, levelspec] — тестирует только части выражения на уровнях, указанных levelspec.

Следующие примеры показывают действие этих функций.

далее…

Отличительные особенности Mathematica 8

Отличительные особенности Mathematica 8
Ускорение численных расчетов и повышение их точности
Большинство пользователей с трудом уловят разницу между версиями Mathematiea 3 и Mathematica 8. Именно поэтому основной материал данной книги полностью относится к этим двум последним версиям. Тем не менее, различия между версиями есть, и достаточно серьезные.
Пожалуй, главной отличительной особенностью системы Mathematica 8 стало кардинальное ускорение численных расчетов. Традиционно системы символьной математики проигрывали численным системам, таким как MATLAB. далее…