Записи с меткой «значение»

Коллективная работа

. Коллективная работа
В связи с тем, что AutoCAD во многих фирмах стал основным инструментом разработки проектной документации, в самой системе предусмотрены специальные средства коллективной работы, обмена файлами и зашиты документов.
Одновременный доступ
В системе AutoCAD 2002 была предусмотрена команда MEETNOW (ДОСТУП), предназначенная для коллективной работы группы пользователей в сети. Из системы AutoCAD 2011 эта команда исключена. Теперь следует применять программу Windows NetMeeting, вызываемую как стандартную программу из группы Связь. далее…

Настройка AutoCAD

Настройка AutoCAD
Система AutoCAD позволяет настраивать многие элементы пользовательского интерфейса (строку меню, панели инструментов, экранное меню и т. п.). Параметры настройки формируются уже на стадии установки AutoCAD на ваш компьютер — большая часть по умолчанию, а что-то (например, размещение папок для программного обеспечения) задает пользователь.
Редактирование настроек выполняется либо с помощью команды OPTIONS (НАСТРОЙКА), либо с помощью пункта Options (Настройка) падающего меню Tools (Сервис), либо с помощью пункта Options (Настройка) контекстного меню, вызываемого щелчком правой кнопки мыши в зоне командных строк. Последнее меню идентично падающему меню Edit (Средства) текстового окна AutoCAD.
Изменение установок, сделанных в настройке, требует опыта работы с системой AutoCAD, поэтому делать их начинающим пользователям не рекомендуется.
Команда OPTIONS (НАСТРОЙКА) вызывает диалоговое окно Options (Настройка), которое имеет девять вкладок:

  •  Files (Файлы);
  •  Display (Экран);
  •  Open and Save (Открытие/Сохранение);
  •  Plotting (Печать);
  •  System (Система);
  •  User Preferences (Пользовательские);
  •  Drafting (Построения);
  •  Selection (Выбор);
  •  Profiles (Профили).

Настройка путей доступа
Вкладка Files (Файлы) задает пути для поиска файлов различных типов, элементов программного обеспечения (шрифтов, текстовых редакторов и т. п.), пользовательских проектов, пользовательских приложений и т. д. Находящиеся справа кнопки Browse (Обзор), Add (Добавить), Remove (Удалить), Move Up (Вверх), Move Down (Вниз) и Set Current (Установить) позволяют корректировать ранее установленные пути, удалять, добавлять и менять местами пути поиска. Кнопки отключаются и включаются в зависимости от действий пользователя.
Настройки путей оформлены в виде дерева, в котором есть разделы (строки), параметры и значения параметров. далее…

Контроль уровня вывода решения ДУ

Контроль уровня вывода решения ДУ
Для углубленного анализа аналитического решения ДУ (или системы ДУ) можно использовать специальную возможность управления уровнем вывода решения с помощью системной переменной infilevel(dsolve)=level. Значение level =all дает обычный вывод решения без Комментариев, уровень 1 зарезервирован для информации, которую может сообщить пользователь, уровень 2 или 3 дает более детальный вывод (включая сообщения об использованном алгоритме и технике решения) и, наконец, уровни 4 и 5 дают наиболее детальную информацию (если тиковая есть в дополнение к той информации, которую дает уровень 2 или 3). 
Приведем пример .аналитического решения ДУ третьего порядка с контролем уровня вывода решения: 

В данном случае повышение уровня вывода до 4 или 5 бесполезно, поскольку вся информация о решении сообщается уже при уровне 2 (или 3).
Приближенное полиномиальное решение ДУ
Во многих случаях аналитические решения даже простых ДУ оказываются весьма сложными, например содержат специальные математические функции. При этом нередко полезна подмена такого решения другим, тоже аналитическим, но приближенным решением. Наиболее распространенным приближенным решением в этом случае может быть полиномиальное решение, то есть замена реального решения полиномом той или иной степени. При этом порядок полинома задается значением системной переменной Order, а для получения такого решения функция dsolve должна иметь параметр series.
представлено решение ДУ третьего порядка различными методами: точное аналитическое и приближенное в виде полинома с максимальным заданным порядком 10 и 60. График дает сравнение этих решений для зависимости y(t).
Дадим небольшой комментарий. Нетрудно заметить, что точное аналитическое решение весьма сложно и содержит специальные функции Бесселя и гамма- функции. При порядке полинома 8 (он несколько меньше заданного максимального) решение практически совпадает с точным до значений t < 2, а при максимальном заданном порядке 60 область совпадения расширяется до значений t < 5,5. Затем приближенное решение резко отходит от точного. далее…

Применение функции odeplot пакета plots

Применение функции odeplot пакета plots
Для обычного графического представления результатов решения дифференциальных уравнений может использоваться функция odeplot из описанного выше пакета plots. Эта функция используется в следующем виде:
odep1ot(s,vars.r,o) 
где s — запись (в выходной фирме) дифференциального уравнения или системы дифференциальных уравнений, решаемых численно функцией dsolve, vars — переменные, г — параметр, задающий пределы решения (например, а. .Ь), и о — необязательные дополнительные опции.
представлен пример решения одиночного дифференциального уравнения с выводом решения у(х) с помощью функции odeplot.
В этом примере решается дифференциальное уравнение:
y'(x)=cos(x2y(x))
при у(0) = 2 и x, меняющемся от-5 до 5. Левая часть уравнения записана с помощью функции вычисления производной diff. Результатом построения является график решения у(х). 
В другом примере представлено решение системы из двух нелинейных дифференциальных уравнений. Здесь с помощью функции odeplot строятся графики двух функций. —у(х) и z(x).
В этом примере решается система:
у'(х)=z(х),
z'(x) = 3 sin(y(x))
при начальных условиях y(0)=0, z(0) = 1 их, меняющемся от -4 до 4 при числе точек решения, равном 25.
Иногда решение системы из двух дифференциальных уравнений (или одного дифференциального уравнения второго порядка) представляется в виде фазового портрета — при этом по осям графика откладываются значения у(х) и z(х) при изменении х в определенных пределах. далее…

Решение дифференциальных уравнений

Решение дифференциальных уравнений

Основные средства решения дифференциальных уравнений
Основная функция dsolve
Важное место в математических расчетах занимает решение дифференциальных уравнений. К нему, в частности, обычно относится анализ поведения различных систем во времени (анализ динамики), а также вычисление различных полей (тяготения, электрических зарядов и т. д.). Трудно переоценить роль дифференциальных уравнений в моделировании физических и технических объектов и систем, Maple 15 позволяет решать одиночные дифференциальные уравнения и системы дифференциальных уравнений как аналитически, так и в численном виде. Разработчиками системы объявлено о существенном расширении средств решения дифференциальных уравнений и о повышении их надежности в смысле нахождения решений для большинства классов дифференциальных уравнений. Поэтому данный урок целиком посвящен решению уравнений данного класса. Для решения системы простых дифференциальных уравнений (задача Коши) используется функция dsolve в разных формах записи:
dsolve(ODE)
dsolve(ODE, y(x), extra_args)
 dsolve((ODE, ICs}, y(x), extra_args) 
dsolve({sysODE, ICs}, {funcs}, extra_args)
Здесь ODE — одно обыкновенное дифференциальное уравнение или система из дифференциальных уравнений первого порядка с указанием начальных условий, у(х) — функция одной переменной, Ics — выражение, задающее начальные условия, {sysODE} —множество дифференциальных уравнений, {funcs} —множество неопределенных функций, extra_argument — опция, задающая тип решения. Параметр extra_argument задает класс решаемых уравнений. Отметим основные значения этого параметра:

  •  exact — аналитическое решение (принято по умолчанию);
  •  explicit — решение в явном виде;
  •  system — решение системы дифференциальных уравнений;
  •  ICs — решение системы дифференциальных уравнений с заданными начальными условиями;
  •  formal series — решение в форме степенного многочлена;
  •  integral transform — решение на основе интегральных преобразований Лапласа, Фурье и др.;
  •  series — решение в виде ряда с порядком, указываемым значением переменной Order;
  •  numeric — решение в численном виде.

Для решения задачи Коши в параметры dsolve надо включать начальные условия, а при решении краевых задач — краевые условия. Если Maple способна найти решение при числе начальных или краевых условий меньшего порядка системы, то в решении будут появляться неопределенные константы вида _С1, _С2 и т. д. Они же могут быть при аналитическом решении системы, когда начальные условия не заданы. Если решение найдено в неявном виде, то в нем появится параметр _Т.
По умолчанию функция dsolve автоматически выбирает наиболее подходящий метод решения дифференциальных уравнений. далее…

Визуализация корней случайных полиномов

Визуализация корней случайных полиномов.
Наряду с традиционной для математических и статистических программ возможностью генерации случайных чисел Maple 15 предоставляет довольно экзотическую возможность генерации случайных полиномов с высокой максимальной степенью. Для этого используется функция:
randpoly(var,o)
Она возвращает случайный полином переменной var, причем максимальная степень полинома птах может указываться параметром о вида degree=nmax.
Приведем примеры генерации случайного полинома с максимальной степенью 50:

С помощью функции аllvalues можно построить список SA корней случайного полинома. А с помощью команды вида:
> with(plots):
complexplot(SA.x=-1.2..1.2.style=point):
построить комплексные корни полученного случайного полинома в виде точек • на комплексной плоскости. Один из таких графиков (их можно построить множество) показан.
Можно заметить любопытную закономерность — точки, представляющие корни случайного полинома, укладываются вблизи окружности единичного радиуса с центром в начале координат. Однако этот пример, приводимый в ряде книг по Maple, показывает, что порою вычисления могут давать довольно неожиданные результаты. далее…